
Effective Web-Scale Crawling Through Website Analysis

Iván González∗

Carnegie Mellon University
School of Computer Science

Pittsburgh, Pennsylvania

ieg@cs.cmu.edu

Adam Marcus∗

Rensselaer Polytechnic
Institute

Computer Science
Department

Troy, New York

marcua@cs.rpi.edu

Daniel N. Meredith,
Linda A. Nguyen

IBM Almaden Research
Center

San Jose, California

{dnm, lan}@us.ibm.com

ABSTRACT
The web crawler space is often delimited into two general
areas: full-web crawling and focused crawling. We present
netSifter, a crawler system which integrates features from
these two areas to provide an effective mechanism for web-
scale crawling. netSifter utilizes a combination of page-level
analytics and heuristics which are applied to a sample of
web pages from a given website. These algorithms score
individual web pages to determine the general utility of the
overall website. In doing so, netSifter can formulate an in-
depth opinion of a website (and the entirety of its web pages)
with a relative minimum of work. netSifter is then able to
bias the future efforts of its crawl towards higher quality
websites, and away from the myriad of low quality websites
and crawler traps that litter the World Wide Web.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architecture; H.2 [Information
Systems]: Information Storage and Retrieval

General Terms
Performance, Design

Keywords
WebFountain, UIMA, netSifter, crawling, sampling

1. INTRODUCTION
There are numerous challenges facing today’s web crawlers.

The Internet has reached such proportions that a crawler
can neither be expected to scan the Web in its entirety, nor
refresh all content in a timely manner. Content of ques-
tionable merit has proliferated, and in an effort to conserve
constrained resources such as bandwidth, processing time
and storage, a crawler must avoid such content while direct-
ing its efforts toward the discovery of higher-value content,
and refreshing known good content.

We implemented netSifter within IBM’s WebFountain [3]
to counter the challenges faced by current crawler method-
ologies. netSifter is a scalable, flexible architecture that ap-
proaches the Web as a collection of websites, so as to avoid

∗Work done at IBM Almaden Research Center.

Copyright is held by the author/owner(s).
WWW 2006, May 23–26, 2006, Edinburgh, Scotland.
ACM 1-59593-332-9/06/0005.

evaluating web pages one by one. The unique concept of the
solution is to rank the URL frontier by making page-level
judgements based on knowledge of the originating site. This
site knowledge is created by performing various analyses on
a sample of pages from the site, and subsequently formulat-
ing an overall site score. Future pages from the site can then
be prioritized in relation to other pages via the site score.
The rationale for this idea is that pages from a common site
are related, and share characteristics indicative of quality.

netSifter is extensible to varied needs, allowing it to take
advantage of both modern focused crawling techiques [1]
and full-web crawling strategies [2]. For example, netSifter
can make use of relatively expensive content-based analy-
ses while remaining scalable, since only a sample of pages
from a site are examined. Additionally, netSifter can make
simplified use of popularity measures by, for example, ex-
amining outlinks from the sample set of web pages, or by
incorporating link-based ranking results into the site scores
periodically. Since netSifter employs a plurality of analysis
techniques, a website is not excluded or included based on
any one metric.

2. SYSTEM DETAILS

2.1 Architecture
The architecture is divided into two stages: online and

offline analysis. The online analysis stage is comprised of
the scheduler and the online analysis manager. These com-
ponents direct the crawl, and route pages to offline analy-
sis. The offline analysis stage contains a UIMA [4] analyt-
ics chain which performs more extensive content inspection
and analysis in order to generate site scores. This analytics
chain can be distributed across many nodes via a service-
oriented architecture, and is able to run independently and
asychronously with respect to the main crawling process.
The individual components are described below.

• Site Score Database The site score database serves as
the link between the online and offline analysis stages,
where online analysis queries for site scores in order to
prioritize the URL frontier, and offline analysis gener-
ates or updates them. Site scores represent the relative
value of a site compared to any other site.

• Scheduler The crawler perpetually iterates over a list
of all URLs that have been discovered or seeded. The
list is retrieved in batches, and each URL in the batch
is given a score based on its website’s score. The batch

1041



Pages Sites ODP (Sites) ODP (Pages) OPD Utility ODP Utility (Weighted) SiteRank Utility
unbiased 8,290,541 95,298 35.8% 60.7% 5,423,823 1,564,620,987 251.9
netSifter 7,245,369 65,747 43.0% 67.7% 5,075,633 4,364,345,087 438.1

Table 1: Results for unbiased and netSifter crawls

is sorted by score in descending order, and then sent
to the fetcher. The fetcher is allocated a time period
in which to fetch as many URLs as possible, though
it is generally not able to exhaust a given list. If a
site score does not exist, a slightly higher than neutral
score is assigned, as unscored sites are favored for their
potential to contain novel content.

• Online Analysis Manager In addition to being sent to
the main system for storage and indexing, all newly
fetched pages are routed to the online analysis man-
ager, which determines whether or not a page should
be sent to the offline analysis stage. If a page is empty,
contains any “soft” errors, or fails other basic data-
validity tests, it is discarded. A page is sent offline if
no site score for the page exists, or if a sufficient period
of time has elapsed since a site score was produced.

• Offline Analytics Chain The offline analytics chain passes
a page through various annotators, each of which scores
the page based on various algorithms. The final an-
notator in the chain combines the individual scores
into a weighted average and applies optional heuris-
tics. The final page score is then stored temporarily in
a database. Once a sufficient sample of pages for a site
have been collected, those page scores are aggregated
and submitted to the site score database.

2.2 Sampling Method
netSifter employs a sampling method to determine that

a sufficient sample has been collected from a site. It is as-
sumed that the sample a crawler generates consists of in-
dependent and identically distributed pages. A sufficient
sample is defined as being a sample which produces a page-
score mean x̄ which represents the population mean µ within
µ ± δ at a confidence level of 95% using a standard t-test.

We require a website to pass the t-test for three sequential
observations in order to provide an opportunity for the crawl
to move past locally consistent content, and find a better
estimate of the mean for the entire site. A maximum sample
size is set to avoid analyzing too many pages for websites
which are unable to produce a consistent site score within a
reasonable sample size.

3. RESULTS AND CONCLUSION
To validate that netSifter accurately measures site quality,

we compared website scores to SiteRank (a site-level vari-
ant of PageRank) scores. A list of corresponding netSifter
and SiteRank scores for sites was produced, and sorted in
descending order of SiteRank score. Sites were grouped into
buckets, and counts of netSifter scores greater than, equal
to, and less than 0 were generated. The results can be seen
in Figure 1. There is a positive correlation between higher
netSifter scores and site-connectedness.

Among the top 1000 SiteRank scores, 148 sites were scored
negatively by netSifter. There were many Asian language,
spam, link farm, and adult content sites. The presence of

 0

 10

 20

 30

 40

 50

 60

 70

 80

4001-46133001-40002001-30001001-20001-1000

pe
rc

en
ta

ge
 o

f s
ite

s

sites ordered by SiteRank, grouped

netSifter score > 0
netSifter score == 0

netSifter score < 0

Figure 1: netSifter and SiteRank score correlation

Asian sites indicates that some annotators improperly han-
dle non-English content. netSifter correctly scored spam and
adult content sites, even though these sites were rated well
by SiteRank. Among the bottom 1000 SiteRank scores, 373
sites were scored positively by netSifter. Manual examina-
tion of these sites rated a large majority as postive. This
shows that netSifter was able to identify interesting sites
which were not well-connected.

The second experiment compares a netSifter crawler against
an unbiased crawler. The utility of the crawlers was mea-
sured using ODP Utility (the count of pages crawled from
sites which appear in the ODP listings, ODP Utility (Weighted)
(the sum of the number of pages crawled from a given site
multiplied by the number of site appearances in the ODP,
and SiteRank Utility (the number of pages crawled from a
given site multipled by the SiteRank of that site. The re-
sults are shown in Table 1. Though netSifter crawled fewer
pages than the unbiased crawl, it outperformed it on ODP
Utility (Weighted) and SiteRank Utility.

netSifter demonstrates that by exploiting the logical as-
sociation of a web page to a website, and then forming an
estimate of the overall quality of a website, the URL frontier
of a web-scale crawler can be effectively prioritized to bias
the crawler towards higher-quality content.

4. REFERENCES
[1] S. Chakrabarti, M. van den Berg, and B. Dom. Focused

crawling: a new approach to topic-specific Web
resource discovery. Computer Networks (Amsterdam,
Netherlands: 1999), 1999.

[2] J. Cho, H. Garćıa-Molina, and L. Page. Efficient
crawling through URL ordering. Computer Networks
and ISDN Systems, 1998.

[3] D. Gruhl, L. Chavet, D. Gibson, J. Meyer,
P. Pattanayak, A. Tomkins, and J. Zien. How to build
a webfountain: An architecture for very large-scale text
analytics. IBM Systems Journal, 43(1):64–77, 2004.

[4] International Business Machines Company.
http://www.research.ibm.com/UIMA.

1042


