
Tweets as Data: Demonstration of TweeQL and TwitInfo

Adam Marcus, Michael S. Bernstein, Osama Badar,
David R. Karger, Samuel Madden, Robert C. Miller

MIT CSAIL
{marcua, msbernst, badar, karger, madden, rcm}@csail.mit.edu

ABSTRACT
Microblogs such as Twitter are a tremendous repository of user-
generated content. Increasingly, we see tweets used as data sources
for novel applications such as disaster mapping, brand sentiment
analysis, and real-time visualizations. In each scenario, the work-
flow for processing tweets is ad-hoc, and a lot of unnecessary work
goes into repeating common data processing patterns. We intro-
duce TweeQL, a stream query processing language that presents a
SQL-like query interface for unstructured tweets to generate struc-
tured data for downstream applications. We have built several tools
on top of TweeQL, most notably TwitInfo, an event timeline gener-
ation and exploration interface that summarizes events as they are
discussed on Twitter. Our demonstration will allow the audience
to interact with both TweeQL and TwitInfo to convey the value of
data embedded in tweets.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Databases

Keywords
Twitter, Microblog, Visualization, Stream Processing

1. INTRODUCTION
Microblogging platforms such as Twitter have seen tremendous

uptake in recent time. Designed for facilitating short broadcast-
oriented conversations, Twitter’s stream is also a valuable source
of data. For example, the tweet stream has been used to map dis-
asters [9], predict movie success [1], and augment realtime event
interfaces [4].

Previous applications built on top of the tweet stream have used
ad-hoc data processing workflows over the low-level Twitter API,
generally reinventing the wheel with each new application. To ad-
dress this problem, we have built TweeQL, a query language and
stream processor designed for tweets. TweeQL shares many prop-
erties with traditional stream processing systems, but integrates fea-
tures designed to handle the unstructured nature of tweets, the so-
cial graph in which the tweets operate, and the irregularities in-
volved in processing human-generated text.

As a proof of concept of TweeQL, and as an example of how to
meaningfully aggregate data from the tweet stream, we have also
built TwitInfo. TwitInfo is a web application that allows users to

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

track a set of keywords (e.g., “obama”) and gain a better under-
standing of the events surrounding those keywords as discussed on
Twitter. The heart of TwitInfo is a timeline display that highlights
peaks of high tweet activity. A novel algorithm discovers these
peaks and labels them meaningfully using text from the tweets.
Users can visually explore events through a variety of metadata,
such as geolocation, sentiment, and popular URLs.

This demonstration will allow the audience to interact with
TweeQL and TwitInfo. Users of the TweeQL interface will be able
to issue SQL-like queries to TweeQL and immediately see the re-
sults of those queries on the live Twitter stream. TwitInfo users
will be invited to explore annotated timelines and visual depictions
of events summarized from Twitter. Users will be able to explore
pre-generated queries and views in addition to exploring their own
creations.

2. TWEEQL
TweeQL1 provides a SQL-like query interface on top of the Twit-

ter streaming API. The streaming API allows users to issue long-
running HTTP requests with keyword, location, or userid filters,
and receive most tweets that appear on the stream and match these
filters. TweeQL provides windowed select-project-join-aggregate
queries over this stream, and facilitates user-defined functions for
deeper processing of tweets and tweet text. To best understand
TweeQL’s design, it helps to understand the challenges in process-
ing the tweet stream:

Unstructured Records. Unlike more structured data sources,
the majority of the value in Twitter’s stream lies in the unstruc-
tured text being processed. TweeQL offers various facilities for
extracting structure from unstructured tweets. First, it provides
streaming string and regular expression matching on tweet text,
to identify tweets of interest and extract fields of interest from
the text. Next, it provides a classification framework, used pri-
marily for sentiment analysis, to extract categories from tweets.
Finally, it provides UDFs for common web services for deriv-
ing structure from unstructured content. As an example, TweeQL
provides a UDF for geocoding addresses into latitude/longitude
pairs. Another UDF takes tweet text, passes it to OpenCalais
(http://www.opencalais.com/), and returns named enti-
ties mentioned in the text.

An example TweeQL query shows some of these features:

SELECT sentiment(text), latitude(loc), longitude(loc)
FROM twitter
WHERE text contains ‘obama’;

1Available as an open source distribution at https://github.
com/marcua/tweeql

http://www.opencalais.com/
https://github.com/marcua/tweeql
https://github.com/marcua/tweeql


In this example, we select the classified sentiment from the user-
provided tweet text, and extract geocoded latitude and longitude
from a free-text user-defined location of all tweets containing the
word obama.

Uncertain Selectivities. TweeQL users might issue multiple filters
that are applicable to the streaming API, but only one filter type can
be submitted to the API. For example, a user issuing the query
SELECT text
FROM twitter
WHERE text contains ‘obama’

AND location in [bounding box for NYC];

wants to see all tweets containing the word obama that are tweeted
from the New York City area. TweeQL must select between re-
questing all obama tweets, and all NYC tweets. TweeQL samples
both streams in this case, and selects the filter with the lowest selec-
tivity in order to require the least work in applying the second filter.
We are also exploring Eddies-style [2] dynamic operator reodering
to adjust to changes in operator selectivity over time.

Uneven Aggregate Groups. When aggregating over human output
on a geographic region, traditional windowed result strategies are
inadequate. For example, the query
SELECT AVG(sentiment(text)),

floor(latitude(loc)) AS lat,
floor(longitude(loc)) AS long

FROM twitter
WHERE text contains ‘obama’
GROUP BY lat, long
WINDOW 3 hours;

would calculate average sentiment in 1°x 1°latitude/longitude re-
gions of tweets containing the term obama. The average would be
aggregated per region every three hours. This fixed time window is
not flexible enough due to the uneven distribution of Twitter users
across the planet. For example, Tokyo has many Twitter users, but
Cape Town has far fewer, resulting in an oversampled bucket for
one, and an undersampled bucket for the other. Basing the window
size on tweet count rather than time is also inadequate: aggregating
tweets over too long a time period may include old tweets, which
are now irrelevant. Instead, we use a construct for windowing that
measures confidence in the aggregated result, similar to what was
done in the CONTROL project [6]. Once a bucket falls within a
certain confidence interval for an aggregate, its record is emitted
by the grouping operator.

High-latency Operators. We have used latitude and longitude
operators throughout the examples above. These operators make
web service API requests to some remote geocoding service, which
converts a user-provided location into coordinates. Such requests
optimistically take hundreds of milliseconds apiece, but incur little
processing cost on behalf of the query processor. Though the oper-
ations incur little computational cost, they often bottleneck block-
ing operators. We employ caching to avoid requests, and batching
when an API allows multiple simultaneous requests. We are ex-
ploring how to efficiently modify the query executor for necessary
requests. One potential design adds asynchronous iteration to the
executor as described by Goldman and Widom [5]. This, in combi-
nation with a data model that allows partial results as described by
Raman and Hellerstein [8] might be a sufficient solution.

3. TWITINFO
TwitInfo [7] is an application written on top of the TweeQL

stream processor. TwitInfo is a user interface that summarizes

events and people in the news by following what Twitter users say
about those topics over time2. TwitInfo offers an example of how
aggregate data extracted from tweets can be used in a user interface.
Other systems, such as Vox Civitas [3], allow similar exploration,
but TwitInfo focuses on the streaming nature of tweet data.

3.1 Creating an Event
TwitInfo users define an event by specifying a Twitter keyword

query. For example, for a soccer game, users might enter search
keywords soccer, football, premierleague, and team names like
manchester and liverpool. Users give the event a human-readable
name like “Soccer: Manchester City vs. Liverpool” as well as an
optional time window. When users are done entering the informa-
tion, TwitInfo saves the event and begins logging tweets matching
the query.

3.2 Timeline and Tweets
Once users have created an event, they can monitor the event in

realtime by navigating to a web page that TwitInfo creates for the
event. The TwitInfo interface (Figure 1) is a dashboard summariz-
ing the event over time. The dashboard displays a timeline for this
event, raw tweet text sampled from the event, an overview graph
of tweet sentiment, and a map view displaying tweet sentiment and
locations.

The event timeline (Figure 1.2) reports tweet activity by volume.
The more tweets that match the query during a period of time, the
higher the y-axis value on the timeline for that period. When many
users are tweeting about a topic (for example, Obama), the timeline
spikes. TwitInfo’s peak detection algorithm is a stateful TweeQL
UDF that performs streaming mean deviation detection over the
aggregate tweet count. The algorithm identifies these spikes and
flags them as peaks in the interface.

Peaks appear as flags in the timeline and appear to the right of the
timeline along with automatically-generated key terms that appear
frequently in tweets during the peak. For example, in Figure 1.2,
TwitInfo automatically tags one of the goals in the soccer game as
peak “F” and annotates it on the right with representative terms in
the tweets like ‘3-0’ (the new score) and ‘Tevez’ (the soccer player
who scored). Users can perform text search on this list of key terms
to locate a specific peak.

The timeline is a way to filter the tweets in the rest of the inter-
face: when the user clicks on a peak, the other interface elements
(map, links, tweet list, and sentiment graph) refresh to show only
tweets in the time period of that peak.

The Relevant Tweets panel (Figure 1.4) lists tweets that fall
within the event’s time window. These tweets are sorted by sim-
ilarity to the event or peak keywords, so that tweets near the top
are most representative of the selected event. Tweets are colored
blue, red, or white depending on whether their detected sentiment
is positive, negative, or neutral.

3.3 Aggregate Metadata Views
In addition to skimming sentiment for individual tweets, a user

may wish to see the general sentiment on Twitter about a given
topic. The Overall Sentiment panel (Figure 1.6) displays a piechart
representing the total proportion of positive and negative tweets
during the event.

Twitter users share links as a story unfolds. The Popular Links
panel (Figure 1.5) aggregates the top three URLs extracted from
tweets in the timeframe being explored.

2The TwitInfo website with interactive visualizations is accessible
at http://twitinfo.csail.mit.edu/

http://twitinfo.csail.mit.edu/


Figure 1: The TwitInfo user interface.

Often, opinion on an event differs by geographic region. A user
should be able to quickly zoom in on clusters of activity around
New York and Boston during a Red Sox-Yankees baseball game,
with sentiment toward a given peak (e.g., a home run) varying by
region. The Tweet Map (Figure 1.3) displays tweets that provide
geolocation metadata. The marker for each tweet is colored ac-
cording to its sentiment, and clicking on a pin reveals the associated
tweet.

4. DEMONSTRATION
Our demonstration will invite the audience to interact with both

TweeQL and TwitInfo. Users will be able to view canned examples
or generate their own.

The TweeQL demo will feature a command line query interface
that is familiar to most database users. We will offer the audience
a selection of pre-built queries, which they can copy and paste into
the command line to view live streaming results on their screen.
Once audience members are familiar with the SQL-like language,
they will be able to generate their own queries of interest, and build
their own UDFs for more advanced processing.

The TwitInfo demo will focus on the user interface described
above. We will provide three canned examples: a soccer match,
a timeline of earthquakes, and a summary of a month in Barack
Obama’s life. The audience will be invited to explore these pre-
built experiences, or track new terms of interest.

5. REFERENCES
[1] S. Asur and B. A. Huberman. Predicting the future with social

media. CoRR, abs/1003.5699, 2010.
[2] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive

query processing. In In SIGMOD 2000.
[3] N. Diakopoulos et al. Diamonds in the rough: Social media

visual analytics for journalistic inquiry. In VAST 2010.

[4] N. Diakopoulos and D. A. Shamma. Characterizing debate
performance via aggregated twitter sentiment. In CHI ’10.
ACM Press, 2010.

[5] R. Goldman and J. Widom. WSQ/DSQ: a practical approach
for combined querying of databases and the web. SIGMOD
Rec., 29(2):285–296, 2000.

[6] P. J. Haas and J. M. Hellerstein. Online query processing: a
tutorial. In SIGMOD, 2001.

[7] A. Marcus et al. Twitinfo: Aggregating and visualizing
microblogs for event exploration. In CHI 2011.

[8] V. Raman and J. M. Hellerstein. Partial results for online
query processing. In SIGMOD 2002.

[9] S. Vieweg et al. Microblogging during two natural hazards
events: What twitter may contribute to situational awareness.
In CHI 2010.


	Introduction
	TweeQL
	TwitInfo
	Creating an Event
	Timeline and Tweets
	Aggregate Metadata Views

	Demonstration
	References

