
Crowdsourced Databases: Query Processing with People

Adam Marcus, Eugene Wu, David R. Karger, Samuel Madden, Robert C. Miller
MIT CSAIL

{marcua, sirrice, karger, madden, rcm}@csail.mit.edu

ABSTRACT
Amazon’s Mechanical Turk (“MTurk”) service allows users
to post short tasks (“HITs”) that other users can receive
a small amount of money for completing. Common tasks
on the system include labelling a collection of images, com-
bining two sets of images to identify people which appear in
both, or extracting sentiment from a corpus of text snippets.
Designing a workflow of various kinds of HITs for filtering,
aggregating, sorting, and joining data sources together is
common, and comes with a set of challenges in optimizing
the cost per HIT, the overall time to task completion, and
the accuracy of MTurk results. We propose Qurk, a novel
query system for managing these workflows, allowing crowd-
powered processing of relational databases. We describe a
number of query execution and optimization challenges, and
discuss some potential solutions.

1. INTRODUCTION
Amazon’s Mechanical Turk service (https://www.mturk.

com/mturk/welcome) (“MTurk”) allows users to post short
tasks (“HITs”) that other users (“turkers”) can receive a
small amount of money for completing. A HIT creator speci-
fies how much he or she will pay for a completed task. Exam-
ple HITs involve compiling some information from the web,
labeling the subject of an image, or comparing two docu-
ments. More complicated tasks, such as ranking a set of ten
items or completing a survey are also possible. MTurk is
used widely to perform data analysis tasks which are either
easier to express to humans than to computers, or for which
there aren’t yet effective artificial intelligence algorithms.

Task prices vary from a few cents ($.01-$.02/HIT is a com-
mon price) to several dollars for completing a survey. MTurk
has around 100,000-300,000 HITs posted at any time (http:
//mturk-tracker.com/general/). Novel uses of MTurk in-
clude matching earthquake survivor pictures with missing
persons in Haiti (http://app.beextra.org/mission/show/
missionid/605/mode/do), authoring a picture book (http:
//bjoern.org/projects/catbook/), and embedding turk-
ers as editors into a word processing system [2].

From the point of view of a database system, crowd-
powered tasks can be seen as operators—similar to user-
defined functions—that are invoked as a part of query pro-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2011.
CIDR 2011

cessing. For example, given a database storing a table of
images, a user might want to query for images of flowers,
generating a HIT per image to have turkers perform the fil-
ter task. Several challenes arise in processing such a work-
flow. First, each HIT can take minutes to return, requiring
an asynchronous query executor. Second, in addition to con-
sidering time, a crowdworker-aware optimizer must consider
monetary cost and result accuracy. Finally, the selectivity of
operators can not be predicted a priori, requiring an adap-
tive approach to query processing.

In this paper, we propose Qurk, a crowdworker-aware
database system which addresses these challenges. Qurk
can issue HITs that extract, order, filter, and join complex
datatypes, such as images and large text blobs. While we de-
scribe Qurk here using the language of MTurk (turkers and
HITs), and our initial prototype runs on MTurk, we aim for
Qurk to be crowd-platform-independent. Future versions of
Qurk will compile tasks for different kinds of crowds with
different interfaces and incentive systems. Qurk is a new
system in active development; we describe our vision for the
system, propose a high level sketch of a UDF-like syntax for
executing these HITs, and explore a number of questions
that arise in such a system, including:

• What is the HIT equivalent of various relational op-
erations? For example, an equijoin HIT might require
humans to identify equal items, whereas a HIT-based
sort can use human comparators.
• How many HITs should be generated for a given task?

For example, when sorting, one can generate a HIT
that asks users to score many items, or to simply com-
pare two. How can the system optimize each HIT?
• Given that a large database could result in millions of

HITs, how should the system choose which HITs to
issue? Given that only a fraction of items in a large
database can have HITs generated for them, what is
the proper notion of query correctness?
• How much to charge for a HIT? Higher prices can lead

to faster answers. Can the system adaptively optimize
the price of HITs based on user-specified response time
and budget constraints?
• Who is the right crowdworker for a task? MTurk pro-

vides paid workers, but an enterprise might prefer ex-
pert workers, and an operation with a tight budget
might look for non-monetary incentives.

2. MOTIVATING EXAMPLES
Here is a list of tasks that Qurk should be able to run:

https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
http://mturk-tracker.com/general/
http://mturk-tracker.com/general/
http://app.beextra.org/mission/show/missionid/605/mode/do
http://app.beextra.org/mission/show/missionid/605/mode/do
http://bjoern.org/projects/catbook/
http://bjoern.org/projects/catbook/

MTurk

Statistics Manager Query Optimizer

Executor

Storage Engine

σ

BA

HIT Compiler

Task Model

Task
Manager

Task4

Task5

Task6

Results

a1

a2

inA inB

b1

C
o

m
p

ile
d

H
IT

s

H
IT resu

lts

Task Cache

Internal
HIT

Tasks

Results Results

Figure 1: A Qurk system diagram.

• Given a database with a list of company names, find
the CEO and contact number for each company (see
http://www.readwriteweb.com/enterprise/2010/01/

crowdsourcing-for-business.php).
• Given a set of photographs of people from a disaster,

and pictures submitted by family members of lost in-
dividuals, perform a fuzzy join across both sets, using
humans to determine equality.
• Given a collection of messages (e.g., from twitter),

identify the sentiment of each (e.g., as either “posi-
tive” or “negative”) [3].
• Given a list of products, rank them by “quality” by

searching for reviews on Amazon.

These workflows have relatively small query plans, but in
practice, plans see size increases as more filters and sorts
appear. Additionally, even small plans benefit from Qurk’s
adaptive cost optimizations.

3. SYSTEM OVERVIEW
Qurk is architected to handle an atypical database work-

load. Workloads rarely encounter hundreds of thousands of
tuples, and an individual operation, encoded in a HIT, takes
several minutes. Components of the system operate asyn-
chronously, and the results of almost all operations are saved
to avoid re-running unnecessary steps. We now discuss the
details of Qurk, which is depicted in Figure 1.

The Query Executor takes as input query plans from
the query optimizer and executes the plan, possibly gen-
erating a set of tasks for humans to perform. Due to the
latency in is processing HITs, the query operators commu-
nicate asynchronously through input queues, as in the Vol-
cano system [4]. The example join operator maintains an
input queue for each child operator, and creates tasks that
are sent to the Task Manager.

The Task Manager maintains a global queue of tasks to
perform that have been enqueued by all operators, and builds
an internal representation of the HIT required to fulfill a
task. The manager takes data which the Statistics Man-
ager has collected to determine the number of turkers and
the cost to charge per HIT, which can differ per operator.

Additionally, the manager can collapse several tasks gener-
ated by operators into a single HIT. These optimizations
collect several tuples from a single operator (e.g., collect-
ing multiple tuples to sort) or from a set of operators (e.g.,
sending multiple filter operations over the same tuple to a
single turker).

A HIT that is generated from the task manager first probes
the Task Cache and Task Model to determine if the the
result has been cached (if an identical HIT was executed al-
ready) or if a learning model has been primed with enough
training data from other HITs to provide a sufficient result
without calling out to a crowdworker. We discuss these op-
timizations further in Section 6.

If the HIT cannot be satisfied by the Task Cache or Task
Model, then it is passed along to the HIT Compiler, which
generates the HTML form that a turker will see when they
accept the HIT, as well as other information required by the
MTurk API. The compiled HIT is then passed to MTurk.
Upon completion of a HIT, the Task Model and Task Cache
are updated with the newly learned data, and the Task Man-
ager enqueues the resulting data in the next operator of the
query plan. Once results are emitted from the topmost op-
erator, they are added to the database, which the user can
check on periodically.

4. DATA MODEL AND QUERY LANGUAGE
Qurk’s data model is close to the relational model, with a

few twists. Two turkers may provide different responses
to the same HIT, and results must often be verified for
confidence across multiple turkers. In Qurk’s data model,
the result of multiple HIT answers is a multi-valued at-
tribute. Qurk provides several convenience functions (e.g,
majorityVote) to convert multi-valued attributes to usable
single-valued fields.

We now propose a simple UDF-like approach for integrat-
ing SQL with crowdworker-based expressions. We use SQL
since it should be familiar to a database audience, but we
plan to study a variety of different interfaces in Qurk, some
of which will have a more imperative flavor, or which will
operate over files instead of database tables. We introduce
our proposal through a series of examples.

Filters
In our first example, we look at a query that uses the

crowd to find images of flowers in a table called images, with
an image-valued field called img. The user writes a simple
SQL query, and uses a UDF called isFlower, which is a
single-valued function that takes an image as an argument.

SELECT * FROM images where isFlower(img)

Using the Qurk UDF language, the user defines isFlower
as the following task:

TASK isFlower(Image img) RETURN Bool:

TaskType: Question

Text: ‘‘Does this image:

contain a flower?’’,URLify(img)

Response: Choice(‘‘YES’’,‘‘NO’’)

In our language, UDFs specify the type signature for the
isFlower function, as well as a set of parameters that de-
fine the job that is submitted. In systems like MTurk, a job
looks like an HTML form that the turker must fill out. The

http://www.readwriteweb.com/enterprise/2010/01/crowdsourcing-for-business.php
http://www.readwriteweb.com/enterprise/2010/01/crowdsourcing-for-business.php

parameters above specify the type and structure of the form
that the database will generate. The TaskType field speci-
fies that this is a question the user has to answer, and the
Response field specifies that the user will be given a choice
(e.g., a radio button) with two possible values (YES, NO),
which will be used to produce the return value of the func-
tion. The Text field shows the question that will be supplied
to the turker; a simple substitution language is provided to
parameterize the question. Additionally, a library of utility
functions like URLify (which converts a database blob object
into a URL stored on the web) are provided.

Crowd-provided Data
In this example we show how crowdworkers can supply

data that is returned in the query answer. Here, the query
is to find the CEO’s name and phone number for a list of
companies. The query would be:

SELECT companyName, findCEO(companyName).CEO,

findCEO(companyName).Phone

FROM companies

Observe that the findCEO function is used twice, and that
it returns a tuple as a result (rather than just a single value).
In this case, the findCEO function would be memoized after
its first application. We allow a given result to be used in
several places, including different queries.

The task for the findCEO function follows:

TASK findCEO(String companyName)

RETURNS (String CEO,String Phone):

TaskType: Question

Text: ‘‘Find the CEO and the CEO’s phone

number for the company %s’’, companyName

Response: Form((‘‘CEO’’,String),

(‘‘Phone’’,String))

This task definition is similar to the previous one, except
that the response is a tuple with two unconstrained fields.

Table-valued Ranking Functions
Suppose we want the turker to rank a list of products from

their Amazon reviews. Our SQL query might be:

SELECT productID, productName FROM products

ORDER BY rankProducts(productName)

Here, the rankProducts function needs take in a list of
products, rather than just a single product, so that the user
can perform the comparison between products. The task
definition is as follows:

TASK rankProducts(String[] prodNames) RETURNS String[]:

TaskType: Rank

Text: ‘‘Sort the following list of products

by their user reviews on Amazon.com’’

List: prodNames

The syntax is similar to the previous tasks, except that
the function takes an array-valued argument that contains
values from multiple rows of the database. The TaskType

is specified as Rank. Ranking tasks don’t accept a specific
Response field, but just provide a list of items for the user
to order—in this case, that list is simply the provided array.

The Qurk system may call rankProducts multiple times
for a given query, depending on the number of items in the

table. Ranking tasks are often decomposed into smaller sub-
tasks. To combine results from subtasks, users can be asked
to provide a numeric score, or the system can provide an
approximate ordering of results by ensuring that subtasks
overlap by a few products.

Table-valued Join Operator
In the final example, we show how the crowd can join

two tables. Suppose we have a survivors table of pictures
of earthquake survivors, and a missing table with pictures
submitted by family members. We want to find missing
persons in the survivors table.

SELECT survivors.location, survivors.name

FROM survivors, missing

WHERE imgContains(survivors.image, missing.image)

The imgContains function needs takes two lists of images
to join. The task definition is as follows:

TASK imgContains(Image[] survivors, Image[] missing)

RETURNS Bool:

TaskType: JoinPredicate

Text: ‘‘Drag a picture of any Survivors

in the left column to their matching

picture in the Missing People

column to the right.’’

Response: DragColumns("Survivors", survivors,

"Missing People", missing)

Here, imgContains is of type JoinPredicate, and takes
two table-valued arguments. The task is compiled into a
HIT of type DragColumns which contains two columns la-
beled Survivors and Missing People. Turkers drag match-
ing images from the left column to the right one to identify
a match. The number of pictures in each column can change
to facilitate multiple concurrent comparisons per HIT.

5. QUERY EXECUTION
As mentioned in Section 3, Qurk’s components communi-

cate asynchronously. Each query operator runs in its own
thread and consumes tuples from its child in the query tree.
For each tuple in its queue (or queues, in the case of joins),
it generates a task to be completed by a turker. These tasks
are enqueued for the task manager, which runs a thread for
pricing HITS and collapsing multiple tasks into a single HIT
under the instruction of the optimizer. Multiple HITs will
be outstanding concurrently.

After a task is returned from a crowdworker, it is used
to train a model for potentially replacing turker tasks and
is cached for future reuse. A second thread in the manager
then enqueues the result of the task into the parent oper-
ator’s queue. Finally, if the completed task was generated
by the root of the query tree, the manager inserts the result
into a results table in the database, which the issuer of the
Qurk query can return to at a later time to see the results.

6. OPTIMIZATIONS
A Qurk query can be annotated with several parameters

that are used to guide its execution. The first, maxCost,
specifies maximum amount of money the querier is willing
to pay. A query might be infeasible if the number of HITs,

each priced at a penny (the cheapest unit of payment), ex-
ceed maxCost. minConfidence specifies the minimum num-
ber of turkers who must agree on an answer before it is used.
maxLatency specifies the maximum amount of time that the
user is willing to wait for a HIT to complete.

We plan to explore a cost model based on these parame-
ters in the future. The parameters will help the optimizer
identify the cost per HIT, since higher prices decrease the
turker wait time. The parameters also affect the number
of items batched into a table-valued HIT, such as placing
10 items to a Rank task, or 5 items in each column of a
JoinPredicate task. Finally, the parameters dictate how
many times each HIT can be verified by a subsequent turker.

We now discuss several potential optimizations.

Runtime Pricing: If it appears that one type of task takes
longer to complete than others, Qurk can offer more money
for it in order to get a faster result.

Input Sampling: For large tables that could lead to many
HITs, Qurk attempts to sample the input tables to generate
Qurk jobs that uniformly cover the input space. This is
similar to issues that arise in online query processing [5].

Batch Predicates: When a query contains two filters on
the same table, we can combine them into a single HIT,
decreasing cost and time. For example, a query with predi-
cates imgColor(image) == ‘Red’ and imgLabel(image) ==

‘Car’ could have a single HIT in which turkers are presented
with the imgColor and imgLabel tasks at the same time.

Operator Implementations: To assist with operator pipelin-
ing and provide users with results as early as possible, oper-
ators should be non-blocking when possible (e.g., symmetric
hash joins). Additionally, several potential implementations
of each operator are possible. For example, a Rank task
might ask users to sort a batch of items relative to one-
another, or it might ask users to assign an absolute score to
each and sort items based on their scores.

Join Heuristics: The space of comparisons required for
JoinPredicates can be reduced with a preprocessing step
identifying necessary join conditions. For example, if gender
and race must match on pictures of survivors and missing

persons, a user could add a NecessaryConditions statement
to the imgContains task in Section 4 with those two fields.
Qurk would generate HITs for each image which instructs
turkers to extract gender and race properties from pictures
where possible. JoinPredicate HITs could then only com-
pare items that are compatible, reducing the search space.

Task Result Cache: Once a HIT has run, its results might
be relevant in the future. For example, if the products ta-
ble has already been ranked in one query, and another query
wishes to rank all red products, the result of the old HITs
can be used for this. Additionally, as explored in TurKit [6],
queries might crash midway, or might be iteratively devel-
oped. In such scenarios, a cache of completed HITs can
improve response time and decrease costs.

Model Training: There are situations where an other-
wise acceptable learning algorithm requires training data
to be useful. For example, the isFlower task in Section 4
could potentially be replaced by an automated classifier with
enough training data. If we consider HIT responses as ground

truth data, we can incrementally train an algorithm and
measure its performance relative to the labeled data set,
and then automatically switch over to that algorithm when
its performance becomes good enough.

7. RELATED WORK
Little et al. present TurKit [6], which introduces the no-

tion of iterative crowd-powered tasks. TurKit supports a
process in which a single task, such as sorting or editing
text, might require multiple coordinated HITs, and offers a
persistence layer that makes it simple to iteratively develop
such tasks without incurring excessive HIT costs.

Several systems have been built on top of MTurk’s API
to facilitate higher-order tasks using HITs. Crowdflower [1]
provides an API to make developing HITs and finding cheat-
ing turkers easier, and has abstracted the notion of HITs so
that other systems, such as gaming platforms, can also be
used to deliver HITs to willing participants.

Parameswaran et al. propose a declarative language for
querying crowd workers and outline considerations for an
uncertainty model over the results [7]. With Qurk, we in-
stead focus on how to implement crowd-powered operators
and design a system for executing queries with these oper-
ators. We then describe the optimizations for reducing the
cost and time to execute these queries.

8. CONCLUSION
The MTurk ecosystem is growing daily, and a system for

building and optimizing data processing workflows across
crowdworkers presents many challenges with which the database
community is familiar. We proposed Qurk, a system for
writing SQL-like queries to manage complex turker work-
flows, and discussed several challenges and optimization op-
portunities for the future.

9. REFERENCES
[1] Crowdflower, July 2010. http://crowdflower.com/.

[2] M. S. Bernstein et al. Soylent: a word processor with a
crowd inside. In UIST ’10: Proceedings of the 23nd
annual ACM symposium on User interface software and
technology, pages 313–322, New York, NY, USA, 2010.

[3] N. A. Diakopoulos and D. A. Shamma. Characterizing
debate performance via aggregated twitter sentiment.
In CHI ’10: Proceedings of the 28th international
conference on Human factors in computing systems,
pages 1195–1198, New York, NY, USA, 2010. ACM.

[4] G. Graefe. Volcano - an extensible and parallel query
evaluation system. IEEE Trans. Knowl. Data Eng.,
6(1):120–135, 1994.

[5] P. J. Haas et al. Selectivity and cost estimation for
joins based on random sampling. J. Comput. Syst. Sci.,
52(3):550–569, 1996.

[6] G. Little et al. Turkit: human computation algorithms
on mechanical turk. In UIST ’10: Proceedings of the
23nd annual ACM symposium on User interface
software and technology, pages 57–66, 2010.

[7] A. Parameswaran and N. Polyzotis. Answering queries
using databases, humans and algorithms. Technical
report, Stanford University.

http://crowdflower.com/

	Introduction
	Motivating Examples
	System Overview
	Data Model and Query Language
	Query Execution
	Optimizations
	Related Work
	Conclusion
	References

