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Abstract— In this paper, we describe the functionality of a
toolkit for sharing and long-term use of different types of
geological data sets across disciplines. Our tools allow users
to describe the meaning of their data by attaching semantic
information to it. The toolkit also makes use of the users’ access
patterns to learn how the data are used to further enhance
the utility of data centric methods. These learned patterns are
used in conjunction with the semantic data to help other users
find common ways to navigate heterogenous collections and
highlight interesting information. Our current prototype is being
developed in close collaboration with the Metamorphic Petrology
working group formed to facilitate sharing of data within this
subdiscipline of geosciences as well as with other systems for
sharing of geological data.

I. I NTRODUCTION

In this paper, we describe a set of tools that are being
developed at Rensselaer Polytechnic Institute to facilitate the
sharing and long-term use of different types of geological data
sets across disciplines. These data sets include published data,
geologic and topographic maps, satellite imagery, structural,
seismic, geophysical, petrologic, geochemical and geochrono-
logic data. The availability of a wide range of data sets about
a particular geographic area will permit scientific questions
to be addressed that are currently not feasible because of the
difficulty in collating the necessary information. The tools will
permit data sets collected at different laboratories to be readily
accessible to colleagues at remote locations, and will facilitate
and expedite multi-collaborator research efforts. The toolkit
will provide global access to current data sets that can be
utilized by researchers and students. Finally, the database will
provide ways to organize and summarize data sets so that their
usefulness will endure.

Making data sets widely accessible to different research
groups and scientific fields is clearly a necessary first step
in asking deeper and interesting questions in many scientific
fields. Unfortunately, in many scientific fields where the data
centric approach is relatively new, there is very little infras-
tructure for shared vocabularies and curated data. A major
obstacle to sharing of data between different research groups
and disciplines is the enormous amount of effort required to
build a useful database from the ground up. For example, the
PetDB database [5] initiated at Lamont has as its goal the
cataloging of chemical analyses of rocks dredged from the
ocean ridges. As of January, 2004, PetDB contained 785,000
chemical values for 8300 sample stations and 33,000 rock
samples. Yet this database represents only a small fraction of
the geochemical data available on rocks and serves a limited

audience because it includes only chemical analyses keyed to
specific samples.

Much geological data is highly visual, so a useful database
must rely very heavily on images. Describing the content of
images is a highly challenging task in itself. Developing a
unified data model for this purpose is even harder as it is fairly
common to find many exceptions to any model since each
individual scientist might have a different naming and mapping
scheme for his data sets. The continuous maintenance of the
data remains to be a costly enterprise. A possible solution to
the quandary of creating the database is to develop a system
of tools that would (a) enable the researcher to use his/her
own data in a way that adds value to the experience and (b)
in the process of using the data, catalog the data in a way that
would be useful to other researchers.

A key aspect of all geological data is that it has spatial
significance: data sets refer to or were collected at a specific
spot on or within the earth; data sets refer to a specific rock
sample that were collected at a particular location; a chemical
analysis of a mineral was collected on a specific location
in a sample (e.g., the center or the rim of a grain); images
were collected of particular parts of a sample and their spatial
relation to other parts of the sample, other images collected
on the sample, and chemical analyses collected on the sample.
The spatial correspondances in the data of this form are
critical to the interpretation of the data. Without this spatial
relationship, most geological data sets have greatly reduced
value.

It is a task of the geoscientist to assimilate these data into
a coherent picture/model/image of the properties/appearance
of the Earth, and to interpret these data sets in the context of
how the planet evolved. Because of the breadth of data that
relate to any single geological problem, the scope of this effort
is typically beyond the capabilities of any single researcher.
Even when a researcher has the background to make use
of diverse geological information (geoscientists are generally
broadly trained even if they specialize in a narrow field of
research), the effort to develop a command of the available
data in related fields is often prohibitive. Collaborative efforts
can bring scientists with different expertise together to work
on a focused problem, but even these efforts are limited by
accessibility and evaluation of data. To further confound the
problem, much data collected in the geosciences is never
published, the volume of such data being far too great to
permit publication in traditional (i.e., paper) formats. Access
to the large quantities of unpublished but high quality data



would result in greatly enhanced efficiency of effort and cost
effectiveness by eliminating the need to recollect unpublished
data. To this end, we are collaborating with a working group
in the Metamorphic Petrology subdiscipline of geosciences to
serve as a testbed for the collection and sharing of data. Our
collaborators naturally interact with scientists from various
subdisciplines of geosciences and efforts to collect data in
these disciplines [2], [5].

II. ORGANIZATION OF DATA

The problem of effective organization of data is not a
new one. Many new tools for effective organization of one’s
desktop, for example the Haystack system [4], aim to solve this
problem by storing relationships among the data and allowing
the users to specify semantics of their data with the help of
a data model or ontology. While this is a step in the right
direction, there is a significant problem of scale. It is simply
too hard to create tags for all the data to make them easy
to query and find. There is also the question of finding and
using the correct ontology for a large group of users. While
it might be possible to agree on a series of general concepts
for a specific scientific discipline, more general concepts tend
to be more controversial in terms of their full meaning. It is
hard to reach an agreement on the description and pertinent
properties of many concepts as they are the subject of new
research and hence are still being defined by new findings.

The complementary problem of creating tools to automati-
cally find semantically related items and attaching meaningful
classes to these groups poses other interesting problems. First
of all, the data that our toolkit manages are very heterogenous
in nature and are distributed to hundreds of files. It ranges from
concrete physical objects (i.e. a rock) to large images or to a
single number in a spreadsheet. Hence, it is hard to imagine
an automated content-based tool that is able to deal with such
a heterogeneity and provide highly accurate results. A large
quantity of the data is created by ad-hoc analysis programs that
do not create the necessary semantic information. In addition,
a common process in the scientific inquiry is to conduct many
different tests, examine the results, pose hypotheses and then
test these hypotheses with many additional tests. Hence, the
data with which we deal also contain many interesting results
mingled with many dead-ends, tests that were later found
incorrect, etc. In such a setting, it is very hard to continuously
tag the data to indicate its importance and correctness. Yet,
methods that monitor the user interactions with the data to
arrive at conclusions is a good step in extracting this type of
information. Still, we are then faced with the problem that the
interactions with the data may be very sparse and may not
provide any interesting insights.

One of the common methods in such a case is to process
the tags or annotations in theflickr[3] style to extract similar
content. We consider this a very important step towards solving
some of the problems that we encounter. But, given that the
data creation rate is very high compared to the size of the
community that processes it, it is reasonable to assume that
tags will not exist for all the information that is needed to solve

the data organization problem. Furthermore, there is a need to
attach some specific types of semantic information that will
provide semantic context to the data such as the latitude and
longitude of location from which data were obtained, data’s
type and relationship to other data objects. Hence, truly free-
form tags that do not contain this information will have very
limited use.

To this end, we aim to combine all of the above mentioned
methods to solve our problem, semantic and free-form tagging
are combined with automated tools that extract information
from user interactions. We discuss this in detail in the next
section.

III. T HE TOOLKIT

Our toolkit is an interface that allows a single user to graph-
ically annotate semantic links between files or file segments
(such as a row from a spreadsheet) on his/her computer. The
toolkit allows the user to organize her own data, share it
with a collaborator or public, query existing data and upload
the results for further processing. The current prototype of
the toolkit is written in Java, Swing and uses XML/PDF for
persistent storage of the semantic annotations. As explained
in the following sections, the toolkit stores both implicit and
explicit semantics as well as mined and fuzzy information.
Currently, we are trying to assess how much of this semantic
model can be exposed in RDF or OWL. This is a topic of
ongoing research in the Semantic Web community [7].

The toolkit revolves around the notion of a project that
groups a number of related files, but the semantic information
associated with files is shared among projects. The files related
to a project may range from many different kinds of images,
notes, paper references and emails to assertions about the find-
ings. In this setting, there is a need to incorporate a simple data
model about how data are related to each other. To this end, we
have identified a small number of main classes of objects that a
petrologist deals with routinely. We are currently revising this
model with the help of our collaborators in the Metamorphic
Petrology working group. Almost all the data collected centers
around a sample which is a physical specimen like a rock
sample collected from some geographic location. There is
already a recognized need to identify samples uniquely [5] and
an existing service [6] allows users to register their samples
and obtain a unique SESAR sample number. We decided to
adapt this number for identifying the sample to which that data
belongs. Depending on a specific subdiscipline of geosciences,
this sample is broken down to smaller pieces and is subjected
to different types of analyses. Hence, our classes reflect these
operations. One of the main classes of objects are thin sections
of a sample, called a thin section class, that is subjected to
various analyses.

The main aim of tagging is to identify and easily mark
the main classes such as sample and thin sections with the
names of files to which they belong. This allows us to group
semantically related objects and describe their relationships
to each other. Some tag types for specific classes are pre-
defined by the toolkit to provide a common starting point for



Fig. 1. The screen capture of the toolkit showing annotations on a thin slice

understanding the data. Users are allowed to add new tags
or freetext information to each object in the project. Three
most important types of tags that are provided by the system
are: wherewas it collected from;whenwas it collected and
when was it recorded (internal to the system or extracted from
files); andwho collected it. We try to allow users to perform
many tagging operations in bulk as much as possible with
default values whenever possible. This information also allows
the system to visualize information on many levels as long
as the necessary relationships are provided by the user. The
availability of visual information is of uttermost importance to
the understanding of the data. Hence, our toolkit can show the
availability of samples on a map; the availability or location
of thin sections on a sample; images taken from thin sections
and points where analyses are performed. The user is able to
specify these relationships and use them to navigate through
the data set.

IV. DATA USE AND SHARING

In our model, the use of data is a natural part of the data.
We record implicitly the time data are added and accessed
by users. While each piece of data originates from a specific
user, each user is allowed to add new annotations to the data
at will. In general, we expect two modes of data sharing. A

collaborative project involves sharing of data among a group
of scientists where each user works on the data on their own
computer by adding objects or annotations, and then share it
with others in the group using a check-in/check-out procedure.
Data in this project are visible only to the members of the
group. The second type of sharing is when a group or an
individual decides to share the findings with the general public.
In this case, the same type of information is made available,
but everybody has access to it. Currently, we are developing
a centralized database server to facilitate the sharing of data.
However, as the system grows, we are going to move to a
distributed environment. An important aspect of the database
server is reliability. Given data are available to public, they
must always remain in the public domain and it must be
possible to cite them unambiguously. In this context, data
sharing is not different than publishing the data.

The querying and navigation of this type of data poses
many challenging questions that we will discuss in this section.
Typed and free form semantic tags allow users to locate data
easily, but the answers to such queries may be too large
to be digested easily. In general, even finding data within
one’s own computer is becoming a challenging problem.
For a project with many similar tests, navigating the objects
can be a problem even for the owner of data. When the



data is shared with another person, the problem becomes
exponentially harder. Even though semantic information helps
the users view data with respect to some structure, in most
cases, this structure is not sufficient to understand where to
start and how to effectively navigate the data. Clearly, more
effective semantic summaries may be needed to point out what
is important in the project. As the data is shared between users,
this summary must be expanded to highlight what is new in
the project.

We intend to use the navigation patterns to help us with this
problem. We expect that objects accessed at the same time
tend to be related to each other semantically. As these access
patterns are repeated, our belief that they are semantically
related also becomes stronger. We can analyze access patterns
for specific objects, but the amount of data that we obtain
about each individual object may be very sparse and hence
may not contain many frequent patterns. In this case, semantic
groups and groups of objects sharing frequent tags provide us
with a meaningful abstraction for conducting this analysis.

To understand and model interesting patterns in the data, we
will use a two step method as given in [1]. We first feed access
patterns to a data mining engine CSPADE, a sequence mining
algorithm [8] which selects paterns with a frequency higher
than a given minimum support. Each pattern is a sub-sequence
of the formA before(x) B whereB occurs afterA with at
mostx elements in between, also called agap of x elements.
The patterns and their frequecy are then used to construct a
generalized form of Hidden Markov Models called VOGUE
(Variable Order-Gap for Unstructured Elements) HMM [1] that
describes the most common patterns in the data. This models
allows us to construct a context dependent map. For each
object that the user visits, we can find the next set of possible
objects ordered with respect to how probable it is that the user
might select them during the next data access. This gives us a
somewhat hierarchical view of the data with possible cycles. It
is possible to use this type of information in a number of ways
in the system. First of all, it allows the user to visualize the
most common patterns of use or the latest common patterns of
use based on the dataset used to construct the VOGUE HMM.
A specific project may have multiple patterns of use at the
same granularity corresponding to different research activities
or problems being investigated. It allows the system to detect
these by finding divergence from known access patterns. As a
result, a given data set may have multiple views corresponding
to different interpretations of the data. Each view may be
ordered with respect to the use frequency allowing users to
visualize common data models. As the data are shared, we
expect more interesting data to be tagged by a larger group
of users hence allowing the access models to become more
and more specific. This will allow us to develop a special
type of HMM, coupled VOGUE HMMwith information at
multiple level of granularity, where some states in the original
HMM are replaced by another HMM that reflects the new
level of granularity. For example, in the original HMM, a
state may correspond to samples from a specific region. This
state could be expanded to an HMM that reflects the specific

mineral properties of the samples for this region. More detailed
observations emitting from the states of the original HMM
could be added to include other relevant information for the
types of mineral analysis that could be performed. Hence,
semantic information allows us to improve the effectiveness of
the machine learning module by allowing the learning process
to be employed at different levels of granularity. We are in the
process of integrating this functionality to our prototype.

V. CONCLUSIONS

In this paper, we described a toolkit for organization and
sharing of data sets between geosciences. The functionality
currently is centered around the subdiscipline of Metamorphic
Petrology that our collaborators are coming from. However,
we are coordinating our efforts with other efforts to provide
semantics to geological data. We believe that our methodology
for extracting use patterns from data using data semantics will
be useful in all of these efforts. At the same time, our methods
will benefit greatly from the annotated data being created by
these efforts.

One of the main goals of our approach is to reduce the
cost of semantic tagging. Since we expect users to tag data
in a way that makes sense to them, developing automated
tools to help them is an even harder problem. One possible
approach to solving this problem is to find models that predict
to which classes an object may belong based on existing
information. To this end, HMMs provide us with a new kind
of information by summarizing access patterns at different
levels of granularity for a specific user or groups of users. This
information describes the way the objects are used (objectA
is followed by objectB) and provides a way to understanding
how problems are formulated and researched. Making use
of this information in a predictive fashion provides many
interesting possibilities that we intend to explore. For example,
is it possible for the system to propose which tests to run for
a specific data set? Is it possible to determine possible dead-
ends before even trying them? Can these learned patterns be
used to educate students in how to ask questions and examine
them? Hence, the examination of use patterns provides us with
many interesting possiblities that we intend to explore.
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